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NONLINEAR RESPONSE OF BIMODULAR-MATERIAL PLATES
J. N. Reddy and W. C. Chao
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061
Abstract The paper presents finite element results for

geometrically nonlinear response of fiber-reinforced, single-layer and
two-layer cross-ply rectangular plates constructed of materials which
have linear elastic properties in tension and compression that are
different. A shear deformation theory of layered composite plates,
accounting for large rotations (in the von Karman sense) and the
bimodular action, is employed to analyze rectangular plates made of two
cord-rubber bimodular materials. MNumerical results for transverse
deflection are presented for simply supported plates under sinusofdally

distributed and uniformly distributed transverse loads.

1. INTRODYCTION
The present paper is a continuation of the research by the authors
and fﬁ;ir colleagues [1-5] in the analysis of bimodular composite
plates. The previous investigations by the authors and others were
based on geometrically linear theory of plates. The only exception to
this statement is provided by the works of Kamiya [6,7], which are
concerned with a clamped circular plate, and a simply supported
rectangular plate under sinusoidally distributed 1oad, respectively.

The present paper employs the finite element developed in [2,8] and the

fiber-governed constitutive model of Bert [9] to investigate the

geometrically nonlinear response of bimodular-material plates. The L

following brief review of literature provides a background for the

present paper.

.
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Analysis of plates made of bimodular materials began with the work
of Ambartsumyan [10] in 1965 (although Timoshenko [11] considered the
flexural stresses in such materials as early as 1941, Ambartsumyan's
work is credited for the renewed interest in the analysis of bimodular
materials). Shapiro [12] considered the simple problem of a circular
plate under a pure bending moment at its edge. Kamiya [6,7] analyzed
the large-deflection behavior of clamped circular plates using a finite
difference technique, and rectangular plates under sinusoidally
distributed load using the Galerkin method. 1In these investigations,
only bimodular isotropic materials were considered, and the transverse
shear strains were omitted. The effect of thickness shear deformation
was included in the simple case of cylindrical bending by Kamiya [13].
The first analysis of bimodular, anisotropic materials is apparently due
to Jones and Morgan [14], who treated cylindrical bending of a thin,
cross-ply laminate. In the last coupie of years, a number of papers
dealing with the static bending and free vibration of single-layer and
two-layer cross-ply plates have appeared [1-5, 15-17]. Most of these
works are a result of the support of the research by C. W, Bert at the
University of Oklahoma and the senior author by the Office of Naval
Research, The significant contributions of this research over previous
works are:

(1) the material of each layer is both elastically and
thermoelastically orthotropic and bimodular;

(1i) both single-layer orthotropic and two-layer cross-ply
laminated plate and shell constructions were considered

using a fibre-governed constitutive model;

(i11) transverse shear strains are included;

n e T ———




i i et B L AN o s — = et 8 . —

(iv) simply-supported and clamped boundary conditions are
considered, and sfnusoidal distribution as well as uniform
distribution of transverse load and temperature changes are

considered:

(v) static, transient, and free vibration responses are studied:

and
(vi) both exact (for certain edge conditions and loadings) and
finite-element analyses are presented.
The present paper investigates the large-deflectfon (in the von
Karman sense) behavior of single-layer orthotropic and two-layer cross-

ply plates.

2. _GOVERNING EQUATIONS

Consider a plate constructed of a finite number of uniform-
thickness, orthotropic, bimodular-material layers oriented arbitrarily
with respect to the plate axes. The plate coordinates are taken such
that the xy-plane coincides with the midplane of the plate. Under the
assumptions that the layers remain linearly elastic during the
deformation and the generalized Hooke's law is valid, and that no
debonding occurs between layers, one can employ the equations governing
the shear deformable theory of layered composite plates [8,18]. Since
these equations are amply documented in the works cited earlier (see,
for example, [1-5]), only the strain-displacement relations and the
eéuations of motion will be repeated here to indicate the nonlinear
terms resulting from the von Karman theory.

Assuming that the conditions of the von Karman plate theory are
valid, and accounting for the transverse shear strains, the strain-

displacement relations can be expressed in the form,
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Here u, v, w are the midplane displacements along x, y, z directions:

and by and ¢y are the slopes in the xz and yz planes due to bending

only. In writing the strain-displacement equations, it is assumed that

the products of by s ¢y’ du/ax and 3v/dy are neglected. Since the

constitutive relations are based on the plane-stress assumption, strain

€q does not come into the equattons.

Neglecting the body moments and surface shearing forces, the
equations of equilibrium (in the absence of surface and body forces) can
be written as,

1x*Ny=0

N6,x + Nx,y =0

+ °2,y + N(Ni,w) =

N

(2.2)

[l
o)
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WX

Mo * My -0 "

Mox * Moy -0y =

where Ny, Q;j, and M;j are the stress and moment resultants defined by

0
0

h/2 h/2
(N.' .Mi) = I_h/z (1.2)01 dz N (01 goz) = I_h/z (05,04)dz, (2.3)

and N(«) is the nonlinear operator,
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Mw.Ni) = 3x (N 3%) * 57 (Ng 3x) * o (Ng 3y) * 5y (N2 3y)

Here a; (i =1,2,4,5,6) denotes the stress components (al =a,.

Ty = Oy» Oy = Oyys O = Oy, and o = dxy)’

3. _FINITE-ELEMENT FORMULATION

The finite-element model used in the present study is the same as

that employed in [2] except for the inclusion of the nonlinear terms,

The formulation is not repeated here but the steps involved in the

nonlinear analysis of the bimodular-material plates are pointed out.

The finite-element model, for a typical element, in the present case is

of the following form

[x1{a} = {F}, (3.1)

where {A} denotes the column of the nodal values of the generalized

displacements. The elements of the element stiffness matrix [K] are

given in Appendix I.

Several comments are in order on the computational scheme used in

the present study. First one should note that the stiffness matrix [K]

is nonlinear in that it depends on the displacement vector. Therefore,

On the other hand, the calculation

an iteration technique must be used.

of the stiffness coefficients requires the knowledge of the neutral

surface locations,

1 2
Zox * ° [u.x * ?'(w,x) ]/wx,x

1 2 x
Zay = - Doy + 3 () Vey (3.2) 1

which in turn depend on the solution (u.v.w,¢x.¢y). Thus another

iterative scheme is required for the determination of the neutral
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surface locations, The latter iterative scheme begins with assumed !
values of zp, and zy (say, zpx = zpy = 0) and then A;j, Bjj and Dij are
computed using these values. In general, the neutral-surface locations
are not independent of the position (x,y), and therefore, the
expressions for plate stiffnesses, Aij, Bij and Dij’ also depend on x
and y coordinates. Since the element stiffness coefficients Kij are
evaluated at the Gauss points, the plate stiffnesses Ajj, Bjj and Djj
are also evaluated at the Gauss points by using the neutral-surface
positions computed at the Gauss points. After obtaining the generalized
displacements, the neutral-surface locations are recomputed. Using
these new values of z,, and zny. the stiffnesses for the next iteration
are computed, This procedure is repeated until the difference between
any two consecutive values of z,, (and zny) differ by a small
preselected value (say 0.1%). Once the convergence on the neutral
surface locations is achieved, iteration on the nonlinear stiffnesses is

carried until convergence on the displacements is achieved.

4. NUMERICAL RESULTS AND DISCUSSION

In the following, numerical results are presented for rectangular
plates made of two bimodular materials: aramid cord-rubber (AR) and
polyester cord-rubber (PR), which are used in automobile tires. The
material properties for these two materials are given in Table 1. In
the present study, a 2 x 2 mesh of nine-node isoparametric elements in
the quarter plate was used. The shear correction coefficients k? were

chosen to be §/6. All of the computations were carried on an IBM 3032

computer in double precision,




Table 1 Material properties for aramid cord-rubber and polyester cord-
rubber, unidirectional, bimodulus composite materials.

Property Te#;$Téd—Ru%g;;ressive ng;¥$zter-gg:gsgssive
E11 (GPa) 3.58 0.012 0.617 0.0369
Eo2 (GPa) 0.00909 0.012 0.008 0.0106
V12 0.416 0.205 0.475 0.185
G12 = G13 (GPa) 0.0037 0.0037 0.00262 0.00267
623 (GPa) 0.0029 0.00499 0.00233 0.00475

A sunmary of the linear analysis is presented in Table 2. The
effect of the aspect ratio (b/a) and thickness-to-side ratio (h/a) on
nondimensionalized center deflection (w) is apparent from the results in
Table 2 (also see Figures 1 and 2). The effect of the transverse shear
deformation is to increase the nondimensionalized center deflection as
much as 30% for a side-to-thickness ratio of a/h = 25,

The resulits of geometrically nonlinear bending of bimodular plates
are discussed next. In order to validate the present element for the no-
nlinear analysis, first,single-layer and two-layer cross-ply rectangular
(ordinary, not bimodular) plates under uniformly distributed loading and
simply supported boundary conditions were analyzed, and the results are
compared with the analytical (perturbation) results of Chia [19,20] in
Fig. 3. The materia) properties of the single-layer plate (a/h = 100,
a/b = 1) are (see [19])

EI/EZ = 20.0, GIZ/EZ = 0.5, Vip ® 0.25. (4.1)

The layer properties of the two-layer plate (a/h = 100, a/b = 1) (see
f201)
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Table 2, Comparison of closed-form and finite element solutions of
single-layer (0°) and two-layer (0°/90°) rectangular plates

of aramid-rubber material( linear analysis).

single-layer (0°) Two-layer (0°/90°)

b/a h/a z,,/h w z,./h w
CFS FES CFS FES CFS FES CFS FES

CPT  0.4317 - 0.2 - 0.4281 - 0.6960 -
0.01 0.4317  0.4316 0.7134 0.7137 0.428] 0.4280 0.6969 0.6973
0.1 0.4318  0.4315 0.8134 0.8138 0.4282 0.4279 0.7830 0.7834

0.6 0.2 0.4319  0.4316 1.1125 1.1128 0.4284 0.4281 1.0342 1.0345
0.4 0.4322  0.4319 2.2862 2.2862 0.4290 0.4287 1.9802 1.9800
0.5 0.4323  0.4320 3.1590 3.1589 0.4293 0.4289 2.6695 2.6689
CPT  0.4420 - 1,867 - 0.4383 - L7734 -
.01 0.4420  0.4420 1.8689 1.8698  0.4383 0.4383 1.7751 1.7760
0.1  0.4820  0.4417 2.0537 2.0546 0.4384 0.4381 1.9492 1.9502

1.0 0.2 0.4421  0.4418  2.6058 2.6069 0.4385 0.4381  2.4635 2.4647
0.4 0.4422  0.4419 4.7490 4.7504 0.4388 0.4384 4.3960 4.3976
0.5 0.4423  0.4420 6.3228 6.3243 0.4389 0.4386 5.7764 5.7782
CPT  0.4454 - 3.009 - 0.4434 - 2.8916 -
.01 0.4454  0.4454 3.0123 3.0135 0.4434 0.4434 2.8941  2.8954

2.0 0.1 0.4454  0.4452 3.2774 3.2783 0.4434 0.4431 3.1478 3.1490
0.2 0.4454  0.4451 4,0774 4.0773 0.4434 0.4431 3.9130 3.9137
0.4 0.4454  0.4451  7.2381 7.2337 0.4435 0.4431 6.9234  6.9220
0.5 0.4455  0.4451 9.5801 9.5724 0.4435 0.4431 9.1397  9.1365

tS . ¢ hdy1n2 4
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8.0 -e- b/a = 1, single-layer (FES)
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two-layer (0°/90°)

__________ D

- ®

"

] o T T T T T T N T A Al
a/h> 10 20 30 40 50 60

Figure 1

Effect of side-to-thickness ratio (a/h) on the nondimensionalized
deflection (w) of single-layer (00) and two-layer (00/900) rectan-
gular plates of aramid-rubber bimodular material {small-deflection

theory).
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10.0 1 a
| 'h~=5, SL
SL = single-layer (09)
8.0 1T= two-layer (09/90°
6.0 -
4.0 4
2.0 o
L L L v L L § LI 1 | | h ]
b/a - 0.6 1.0 1.4 1.8 2.2
Figure 2 Effect of aspect ratio (b/a) on the nondimensionalized

deflection (w) of single-layer (0°) and two-layer (09/900)
rectangular plates of aramid-rubber bimodular material
(small-deflection theory).
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[ ordinary-material-plates
Square plate under uniform loading
; 3.0 - a/h=100, a=b _--0
PN S -
8 \74 ) | qo (qob /Ezh)
h -
x %Y 9
;4 2.0 - Y=(]'\)
1{ o FEM
1.0 _ ¢ ~=- Chia[20]

h . . o [+
; 2 w.{ o FEM [0°/90°]

‘ 0.0 ¢ 1 e I 1 . L 1.

: [0°/90°] 100 200 300 400 500 %

0° 5 10 15 20 25 ﬁo

Figure 3. Nonlinear center deflection of single- and two-layer cross-ply
square plates under uniform loading (Et E?, i=1,2; simply
supported boundary conditions)
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Ey/E, = 40.0, G,/E, = 0.6, v¢ = 0.2. (4.2)

The present results are in excellent agreement with those of Chia
[19,20). Next, an isotropic, bimodular, simply supported square plate
under sinusoidally distributed loading was analyzed in an effort to make
comparisons with the results of Kamiya [7]. The present results are
compared with those of Kamiya in Fig. 4. The present results do not
agree with those of Kamiya [7] for all ratios of EC/Et (including 1).
Since our results are validated for EC/Et =1 in the previous example,
one must come to the conclusion that Kamiya's [7] results are in error.
The nondimensionalized center deflection (w/h) versus the load
parameter (q = qu§2a4 /ha) are presented in Table 3 for single-layer
(0°) and two-layer (0°/90°) square plates (a/h = 100) aramid-rubber and
polyester-rubber materials under sinusoidal loading and uniform
loading. First note that the response of aramid-rubber plates is more
nonlinear than that of polyester-rubber plates. Also note that the
deflection due to uniform loading is about one and one-half times that
due to sinusoidal loading (also see Fig. 5).
Table 3 Nondimensionalized transverse deflection of single-layer (0°)
and two-layer (0°/90°) square plates of aramid-rubber and
polyester-rubber materials

_ = — c 4,4
(a/h) =100, w = w/h, q = quzza /h).

Aramid -Rubber Polyester-Rubber
q single-layer (0°) 0°/90° single-layer {0°) 0°/90°
SL unt SL SL ubL SL

Linear 0.1869 0.2959 0.1777 0.1081 0.1683 0.1776
10 0.1776  0.2720 0.1660 0.1069 0.1654 0.1707
20 0.3350 0.4963 0.3100 0.2110 0.3233 0.3254
30 0.4743 0.6821 0.4353 0.3115 0.4718 0.4639
40 0.5977 0.8417 0.5452 0.4081 0.6106 0.5879
50 0.7083 0.9798 0.6443 0.5006 0.7399 0.6997
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Nondimensionalized center deflection, w = w/h
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0.80
o
0.75¢ ™
\\\ q = q, sin’;—x sin-’laax

N q.=q aZ/EchZ

0.70} N o o
N a/h = 100, b=a
q\\ 2-

0.65F \\/FEM((a/h) q,=33.82)

0.60

0.55

0.50

0.45§

0.40

0.35

0.30

~
U\

Kamiya ((a/h)26°=16.91)

0.25 }
0.2 1 L i 1 i
1.0 1.2 1.4 1.6 1.8 2.0 EY/e
Figure 4. Nondimensionalized center deflection versus the ratio

of longitudinal modulus in tension to the longitudinal
modulus in compression for an isotropic bimodular, square
plate under sinusoidal loading (simply supported case).
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Plot of nondimensionalized center deflection versus the aspect
ratio (a/b) is shown in Fig.6 for single-layer and two-layer (0°/90°)
aramid-rubber plates (a/h = 100) under sinusoidal lToading (for the load
parameter value of 10). The effect of the aspect ratio is, relatively,
more pronounced in the two-layer plates than in the single-layer plates
(the effect is to increase the deflection, w = w/h).

Plots of the nondimensionalized center deflection versus the side-
to-thickness ratio and the Toad parameter are shown, respectively, in
Fig. 7 and 8 for aramid-rubber square plates under sinusoidal loading.
From the plots presented in Fig. 7 it is clear that the effect of shear
deformation is more pronounced with increasing values of the load
parameter. This can also be seen from the load-deflection curves

presented in Fig. 8.

5. SUMMARY AND CONCLUSIONS

Results of the finite-element analysis of the equations governing
the Timoshenko-type shear deformable theory that accounts for geometric
nonlinearities of the von Karman plate theory are presented for aramid-
rubber and polyester-rubber bimodular composite plates under transverse
loading. Both single-layer and two-layer cross-ply plates are analyzed
under sinusoidally and uniformly distributed loads. The effect of the
thickness-shear (which is to increase the deflection w/h with increasing
values of side-to-thickness ratio, a/h) is more apparent for side-to-
thickness ratios smaller than twenty, and for larger load parameter
values. The finite-element analysis of ordinary - (i.e., not

bimodular-) material plates whose elastic properties are taken to be the

average of compressive and tensile properties 1isted in Table 1 show

Lk i

rl PP YN e "y

cd o o eatnda




t

.
| B
i
.
i

.
K
.

TW N S

=gk 1

1.0 -

0.8

0.6

0.4

0.2

15

UDL=uniform load, SSL=sinusoidal load
SL=single-layer, TL=two-layer
AR=aramid-rubber

PR=polyester-rubber .”',,——"
a/h = 100

SL,UDL,AR

Figure 5.

1.2 A

=

0.4 A

—h
o
N
o
w
o
F-
o
wn
o
LOn

Load-deflection curves for thin square plates
of bimodular materials (a/h = 100)

]

a/h

SL, SSL, AR

TL, SSL, AR

a/b 1 2 3 4 5

Figure 6.

T r T ) T y T — —

Effect of plate aspect ratio on the nonlinear deflection
of aramid-rubber bimodular-material rectanqular plates
under sinusoidal loading(SSL) (SL=single-layer, TL=two-
layer, AR=aramid-rubber, PR=polyester-rubber)
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8 SL=single-layer(0°)
7 TL=two-1ayer(0/90)

SL, a/h=5
TL, a/h=5

0.6 o
0.4 \SL, a/h=100
TL, a/h=100
0.2 A
— T v T Y —T T T
10 20 30 40 50 q

Figure 7. Load-deflection curves for square plates of aramid-
rubber bimodular material under sinusoidal loading.

o
oo

0.4 4

// J//

30 40 50 a/h

Figure 8. Effect of side-to-thickness ratio on the nonlinear
deflection (w/h) of square plates of aramid-rubber

bimodular material (a/h=100)
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that the deflections predicted are about one-fourth (for aramid-rubber
plates with a/h = 10) of those predicted using the bimodular properties
(see [16]). Thus the effect of bimodularity is significant on the
response.

As pointed out in the introduction of this paper, there is only a
little to be done in the way of finite-element analyses of bimodular
plates. The nonlinear transient response of bimodular plates seems to
be the final step in the series of investigations based on the fiber-
governed constitutive model. As far as the constitutive models are
concerned, there is still a need for improved and/or realistic models.
If a single functional relationship between stresses and strains were
available for both compressive and tensile regions, the analysis would
be much cleaner (free of any assumption concerning the state of stress
or strain in the material).
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Here Aj;, Bij, and Djj are the plate stiffnesses,
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h/2 ?
(Ai5:Bi4:045) = I-h/z (1,2,29)0y 4,92 (1.3 = 1,2,6)

h/2
Ay =S w2 Qpjedz (1.3 = 4,5) (A.8)
where h is the total thickness of fhe plate, oijkx denotes the plane-
stress reduced stiffness (i,j refer to the position in the compliance
matrix: k refers to the sign of the fiber-direction strain: k =1,
tensile and k = 2, compressive; and & refers to the layer numnber), €5

and ¢, are the strains and curvatures associated with the displacements

J
in (2.1), and ky are the shear correction coefficients (see [2-5]).
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